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Abstract The inverse heat conduction problem with many internal responses is considered.
After discretization with respect to time, the problem is described by a system of the Helmholtz
equations i a recurrvent form. An approximate solution of a heat conduction problem in an
wntegral form is shown. Then, an approximate solution of an inverse heat conduction problem in
a flat slab is presented for many internal temperature responses. Stability of the solution with
respect to the internal response errors is investigated for two cases: when the integrals are
calculated with the use of the average value theorem and when they arve calculated numerically.
Analysis of the norm of a matrix that is essential for the solution stability shows that in the case
of three sensors the norm shghtly changes with change of the middle sensor location. If more than
three sensors are taken into consideration, the results practically will not change comparing to the
case of three sensors. The internal temperature response errors are suppressed if the time step is
greater than a certain critical value.

Introduction

The inverse heat conduction problems (IHCPs) the paper deals with are
problems of the boundary temperature identification when some thermal
information at inner points of the considered body is known. They are
frequently solved in an approximate way. In the paper, the first time derivative
of temperature in the heat conduction equation has been replaced by the first
backward finite difference. As a result, a system of the Helmholtz equations
appears instead of the heat conduction equation. Such approach has been
investigated in detail in Grysa (1989). In Ramesh and Lean (1991), the solution
obtained in this way is compared to the analytical solution of a direct problem
(i.e. an initial-boundary one) to demonstrate its effectiveness in relation to
traditional methods’ results. So far such an approach has been applied in case
of two internal responses (IRs) when one-dimensional IHCP is considered
(Grysa and Maciag, 1998a).
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Professor K. Grysa and Professor M. Cialkowski for fruitful discussions throughout the course
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Here this approach is applied to a one-dimensional IHCP when two or more
IRs are given. An IR is defined as a temperature or a heat flux measured or
given at an inner point of the considered body. An internal temperature (heat
flux) response will be abbreviated as ITR (IHFR). The IR at a point is known
either as a continuous function or a set of discrete data. In both cases the IRs are
usually inaccurate. In the paper, stability of the approximated IHCP solution is
investigated with respect to the ITR errors.

The paper by Reinhardt (1993a) presents estimates for the errors of the
boundary temperature or heat flux when I'TRs contain a random noise. The
sequential approximations for the solution of both linear and non-linear one-
dimensional IHCP are analysed there. The method is then considered in
Reinhardt (1993b), where the well-known method of Beck (1985) is also studied
and modified.

Numerical and semi-numerical methods for solving the IHCPs, together with
investigation of the errors due to ITRs inaccuracy, are presented in Kurpisz (1991)
and Taler (1996). A sequential function specification technique for characterization
of the boundary condition in heat treatment operations is presented in Hernandez
et al. (1995). A problem of rapidly varying I'TRs is discussed there.

Two approaches to the problem of solution stability are presented. In both,
the least square method is exploited. In the first one the integrals that appear in
the iterative procedure are calculated analytically. The second one is based on
the spatial discretization when the integrals are calculated numerically.

The considered body is assumed to be homogeneous and isotropic with the
thermal characteristics described by constant coefficients.

Discretization of the heat conduction equation with respect to time
Consider the heat conduction equation in the dimensionless form
0
<V2 — E) T(x,t) =F(x,t) , (x,t)€Qx(0,00) (1)
where V2denotes the Laplace operator, 7 stands for the relative temperature, F°
describes the source function, £ is the dimensionless time (the Fourier number).

Q) denotes the space occupied by the considered body.
The temperature 7T satisfies the initial condition

T(x,0) = To(x) , x€Q 2)

and the boundary condition in the Dirichlet, Neumann or Robin form.

Replacing the time derivative of temperature in the equation (1) with the first
backward finite difference, we arrive after some evaluation to the following
system of the Helmholtz equation in a recurrent form (Grysa, 1989):

(V2= To(x) =fo(x) , x€Q , k=12,... (3)

where Ty(x) = T(x,kVE),xeQ with Vi being a dimensionless time step,
p* =L and
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kAL
Folx) = =2 Th1(x) + p° / Fx,Hdt , k=1,2,... (4)
(h—1)At

The last term on the right-hand side of the formula (4) describes the mean value
of the source function in the time interval ((k — 1) A¢, RAt).

Approximate solution of a heat conduction problem in a general
case

The Helmholtz equation in m-dimensional space can be solved with the use of
the potentials, described as follows:

- the single layer potential

Sl pl1) = / Gl — €. PYR(E)AS(E), € =3, € 00,2 C R" (5)
o0

with % standing for a density of the potential;
« the volume potential

Vi, plf) = — / Gl — 3. D) (D)AV(y) . 1.y €QCR"  (6)
Q

with f denoting the inhomogenity in the Helmholtz equation.
Gu(x —y,p) stands for the fundamental solution of the Helmholtz

equation:
95 €Xb(—plx — ) ifm=1
Gm(x_yap) = %KO@M_J}D lleZZ (7)
Ty P (bl — ) ifm=3

Here K (.) is a modified Bessel function of the second kind of the zero order.

Using the aforementioned potentials for the Helmholtz equation (3) it is
possible to write its solution in an integral form. The introduced notation
makes it possible to write the solution in a compact form (Grysa, 1989):

Ty(x) = S, 01hr) + Vin (%, D1f2) (8)

In the formula (8) the single layer density /% is an unknown function. The
density /,(k=1,2,...), may be found from the temperature (or heat flux)
specified on a boundary or on an inner surface for moments of time equal to
kAL R =1,2,....With the temperature in the form of (8) the respective integral
equation for the density /7, can be then obtained with the use of a boundary
condition or a prescribed internal response (ITR or IHFR) on the inner surface.



When the density /4, is known, the temperature of the solid at any time f = kA?
may be found from the formula (8). If the integral equation for /,(k = 1,2,...)
is constructed with the use of ITR (or IHFR), then we consider an IHCP (Grysa,
1989).

Approximate solution of the IHCP in a flat slab for many internal
responses

Consider one-dimensional transient heat conduction equation in a flat slab of
thickness 1,1.e. 0 < x < 1. In this case the formula (8) reads (Grysa and Maciag,
1998b):

Ty =2 o) exp(=h(1 =)

% p(plr— )Tt (1)

%’
[\’JI”@~
O\H

©)

The IRs (measured or prescribed) are assumed to be known at M internal
points of the slab, M > 2.

Denoting
1
Fl)= expépﬁx) g(x)= exp( j;;l —x)) %}/ (—pl — N Ts(v)y
0
(10)
one obtains
Tr(x) = () (0) + g(x) (1) + vp(x) (11)

Writing the formula (11) for M points the ITRs are given at we arrive at the
following algebraic system of equations with two unknowns, /(0) and %(1):

Here T (x;) stands for the measured (or prescribed) temperature (i.e. ITR) at the
ith point at the £th moment of dimensionless time.

If the IHFRs are given at points on a surface 92* inside the considered body,
then at first 97" /0n has to be calculated with 7 being a unit vector normal to
00* and T given by the formula (8). Next, a system of equations similar to (12)
is constructed.

When M = 2 the system of equations (12) contains two equations and has a
unique solution because the determinant of the system is not equal to zero.
However, when M > 2, it becomes an overdetermined system that can be solved
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only in a sense of minimization of a certain criterion function. Let

M M
Je =" [Tulw) = Ti)] =" () e(0) + g(x)s(1) + vp(x) — T ()]
i=1 i=1

(13)
describe this function. To minimize it one has to solve a system of two

equations, standing for the necessary condition of the function /, minimum,
le.

Aty = O
P _ (14)

To analyze an effect of the ITRs’ errors on the temperature identification error
it is convenient to introduce a matrix notation. Let us denote

flx)  g(x) Ty () vr (1) O
flam)  glam) Ty (xm) ve(xr)
(15)
Then, the system of equation (12) may be written down as follows
T, =XH,+V, (16)

H, is an approximate solution of the system (16) when the function
Ty(x),0 < x <1, minimizes the criterion function J, given by the formula
(13). Using the least square method we find

Hy = (XTX) X7 (T} - V)
Denoting additionally

R e R T)

we arrive at the following form of the function describing approximately
temperature 7Tk(x) of an arbitrary point x of the slab after % time steps:

Ty(x) = F(x)(XTX) X7 (T} = Vi) + el (17)



Stability of the approximate IHCP solution with respect to the ITRS
errors

Let us examine an effect of the ITRs errors on the temperature identification
error. The greatest error is expected at the boundary points that are the most
distant from the IRs. As a result of investigation we are going to determine
conditions concerning such location of sensors and such time steps for which
the ITRs errors are not propagated in time. Let

6Ty (x1)
Ap= : (18)

5T/§(XM)

denote a matrix with the ITR errors in the kth step at first, second, ..., Mth
internal point. We assume that all the ITR errors are of the same order.

Let T¢(x), T¢(x) stand for exact and disturbed temperature respectively, at
a point x. The temperature identification error in the %th step at the point x may
be then written as

§Ty(x) = T (x) — Ti(x)
From the formula (17) and (18) it is easy to obtain the following form of § 7% (x):
-1
6Tr(x) = F(x)(XTX) X" (An— (Vi = VP)) +0f(x) —v5(x)  (19)

Here V7, V,jf stand for exact and disturbed values of the volume potential
(comp. the formula (6)) and v, vg denote exact and disturbed values of the
integral in the formula (10).

The temperature identification error at the kth time step depends on the ITR
errors introduced at all earlier time steps including the kth time step. It becomes
evident when we notice that

1

2 [ exp(—plx1 — y)6T 1 (v)dy
0

Vi—Vi= : (20)

[ exp(—plxar — )6 Tp1(y)dy

o

Without loss of generality we can confine our investigation to the point x = 0
(or x = 1), because at this point the greatest temperature error is expected.
Moreover, in the IHCPs, usually the boundary temperature (heat flux) is to be
found.

As it has been mentioned above we are going to determine conditions
concerning such location of sensors and such time steps for which the ITRs’
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Figure 1.

The maximum
suppression of an ITR
error at the boundaray
point versus time step

errors do not propagate in time. Technically it means that the ITR error from
the (k-1)th time step should affect the identified boundary temperature less
than the ITR error from the kth time step.

First of all, let us notice that the expression v¢(x) — ¢%(x) in the formula (19)
may be omitted because its value (calculated with the use of the average value
for integrals theorem) is negligible when compared to the term
F(x)(XTX) ' XT (V¢ — V¢). Then, considering the difference Ay, — (VI — V)
it is enough to confine the investigation to the elements of matrix (20). With the
use of the theorem on an average value for integrals we find

Do | >

1
/exp(—p|xi —W)6T1(¥)dy = 6T-1(&)
5 (21)

—

(1- ool eal b)) g e oy

Hence, the ITR error at the (2-1)th time step affects the boundary temperature
less than the ITR error introduced at the kth time step if the following
inequality holds:

 exp(—px) + exp(—p(1 — %))
2

1 (1-e?)<a<l, pP=1n;

(22)

. 1
2

Note that for ¢ = 1 the inequality (22) is always satisfied. It is due to the fact
that x, p and 1-x are non-negative. It means that for ¢ < 1 the ITR error from
the previous time step is always suppressed in the next time step. However,
the suppression rate is of great importance. Obviously, the smaller ¢ is, the
bigger suppression takes place. However, the parameter a cannot be too
small. The left limit for @ depends on p and x which means that the maximum
suppression depends on the time step and can be achieved forx =0 orx =1
(see Figure 1).
Solving the inequality (22) one obtains two cases:

05 —————
0455 — —
0482 3 T
40486 .
0484 )
0480 - H

aoa 02 0v0a QoS oodg oto
Tirrs shep




(1) Theinequality holds always if

A > (mf 2)

Unfortunately, the inequality (23) produces too large time steps. For example,
when a = 1/2 then the dimensionless time step is greater than 0.5 while a = 2/3
leadsto At > 0.2

(2) The inequality also holds if

l—a- \/(1 — a)Z—exp(—l/\/Kt)

x < VAtn YY) (24)
or
2
x>@ln1—a+\/(1—a) — exp(—1/VAD) )

exp(—l/\/—A—f)

Since x¢(0,1) we see that the right-hand sides of the conditions (24) and (25)
describe extreme sensor location which guarantees suppression of the IR error
in time. For a given value of a (being a suppression rate) the inequality (24)
informs about the minimum distance from the boundary x = 1; the inequality
(25) concerns the boundary x = 0.

The discussion of these two cases leads to the following conclusion:

« either the sensors are arbitrarily placed in the slab and then the time step
that ensures suppression of the IR error in time can be large (which
means too rough approximation of the temperature field in the slab); or

« the sensors are located near the boundary of the slab and the admissible
(in the sense of the IR error suppression) time step can be small. Of
course, the smaller the time step, the better approximation of the
boundary temperature may be obtained.

The diagrams shown in Figure 2 illustrate the limitation of the sensor location
in the slab versus dimensionless time step according to the conditions (24) and
(25).

The left diagram shows that for fixed value of the suppression parameter ¢
the points placed below the curve should be chosen as the sensor location and
for fixed time step. In the right diagram the points above the curve are the
proper ones. The smaller suppression parameter a is, the closer to the
boundary should the sensors be placed. Concluding, we can say that in order
to improve the ITR error suppression in time for a fixed time step one should
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Figure 2.

Sensor location versus
time step for different
values of the
suppression parameter
a. The left diagram
illustrates the condition
(24), the right one — the
condition (25)

Figure 3.

Nodes of the segment
(0,1) division and ITR
points location

locate the ITR points (e.g. the sensors) as close to the boundary as possible.
On the contrary, for a fixed time step the greater the distance from the
boundary to the ITR points is, the worse results concerning the boundary
temperature may be expected because of the ITR error propagation in time.
And, of course, the greater the time step is, the farther from the boundary the
sensors may be located.

Spatial discretization

The system of Helmholtz equation (3) describes approximately heat transfer
problems when discretized with respect to time. However, the IHCPs are mostly
being solved numerically. Therefore, now we are going to analyze an
approximate solution of an IHCP when the problem is discretized with respect
to time and space. As before, we consider an IHCP in a flat slab of a unit
thickness, i.e. x¢(0, 1).

Here the analysis is led for the case when the ITRs are given in an exact
form.

Let " and x,,, denote spatial discretization points (z = 0,1,...,N) and the
ITR points (m =1,2,...,M) respectively. We assume N>M. Moreover,
2"+ — ¢ = const, that means the segment (0, 1) is split into equal parts. In
Figure 3 spatial discretization nodes as well as the I'TR points are shown.

In our further consideration the formula (9) will be exploited. Because of the
spatial discretization, the integral (the last expression on the right-hand side of
the formula (9) denoted as v4(x) in formula (10)) is calculated approximately.
Hence

1 -
000 e =203
% % DATS =
& 2 o780 -
7 &
ﬁ lﬁ e
’ =510
I:IEII T T |
0.000™2" 5 0252875 1
Time step
xl:l :{1 }!? :'::‘. }!4- :':N
3 I | &} ) {



» L Stability of
vk(m) =75 / exp(—p|xm — Y) Tr-1()dy solutions
0
p (1 _ Xyt N —
=57 (ée | ‘Tk_l(xo) t el |Tk_1(x1)
237
+o e P (Y +%eip’xmixw‘Tk71 (")) (26)
Let
Tk (xo)
Tk
T (V) (N+1)x1

stand for a temperature distribution at the division nodes of the slab in the kth
moment of time. Additionally, denoting

%eiﬂxl —2| e*j)’m —| efp|x1 —aV %efp|x1 —a|

! o bl yp|o—s| bl ] ! el

Mx(N+1)
(27)
by virtue of (15), (10) and (26) we obtain
Vi =E'T, (28)
The stars in the formulas (27) and (28) are due to the ITR point coordinates that
appear there.
Let us introduce a matrix E (analogous to £*) as follows:
%e_p|x0_x0| e_p‘xo_x1| e_p|x0_xN—]| %Q—P|x0—xN|
b
E=—
2N : : : :
1 —plaV—40 —p|aN -1 —plaN =N 1 —plaV—aN
I B AR Ta Laull NN

Denoting additionally
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Figure 4.
Matrix B norm versus
the sensor location

1 et (1)
FZ% : :

_ p(1aV

et (1) (N+1)x2

we arrive at the following formula describing a temperature of any point of the
slab at the £th moment of time:

Ty = F(X"X) "' XT(T; — E*Ty1) + ETy 1 (29)
or

Ty = AT} + BT, (30)

where A = F(XTX)"'X” and B=FE — F(XTX)"'XTE*. The matrix B
decides on convergence of the iterative process described by the formula (30).
Define a matrix norm as follows (Demidowicz and Maron, 1965):

1Bl = v/ Aumax (B - B)

where \,,.¢(B* - B) denotes the greatest eigenvalue of the matrix B*. B and B*
stands for the matrix conjugate to the matrix B.

The process is convergent if the norm of the matrix B is less than 1
(Demidowicz and Maron, 1965).

For three ITRs (M = 3) left and right diagrams presented in Figure 4 show
the dependence of the matrix B norm on the third and first ITR point location
respectively, for the dimensionless time step equal to 0.005, when the second
ITR point is placed at x5 = 0.5. The first diagram is drawn for x; = 0.1; the
second one — for x5 = 0.9.

The diagrams in Figure 4 show that the norm of matrix B depends mostly on
location of the sensor being more distant from the closest boundary point.
Hence, we can assume x3 = 1-x7 .

The diagrams presented in Figure 4 have been obtained for N = 300. Of
course, increasing the number of nodes in the segment (0, 1) division leads to
better accuracy in the integral calculation. The matrix B norm values obtained

25 25 —
20 20 —
= i
15 g 15 =
10 — 10 -
05 | 3 | ! ! 1 ’ | 05 B | ! | ! ! 1
080 085 080 08 1m0 ooe 005 01 015 00

Tinirdl Senar |ocaion Firsl sensor Iooshon



for N =300 and for NV = 600 and for different third sensor location are shown in
Table I. A greater number of the node points causes practically no changes of
the matrix B norm when ||B|| < 1 and slightly changes its value otherwise
(comp. the left diagram in Figure 4).

Figure 5 illustrates the matrix B norm dependence on the middle sensor
location in the case of M = 3 (i.e. for three ITRs) for x; = 0.01 , x3 = 0.99 and
At = 0.005.

The diagram is symmetric with respect to x = 0.5, because x3 = 1-x;. Figure
5 shows that for M = 3 the matrix B norm practically does not depend on the
location of the middle sensor. Dependence of the matrix B norm on the
dimensionless time step for x; = 0.01, x5 = 0.5, x3 = 0.99 is shown in Figure 6
when the segment is split into 300 parts (N = 300).

Figure 6 shows that in the case M = 3 for too small time steps the iterative
process (30) may be divergent. This conclusion can be extended for M > 3. It is
shown in Figure 7, done for M = 4.

Analysis of Figure 7 leads to the following conclusion: the fourth IR point
practically does not change the matrix B norm. Considering the set of the IR
points we see that the number of sensors being placed between the two located
outside with respect to the others has no significant influence on the matrix B
norm. Hence, solving the one-dimensional IHCP in a flat slab it is enough to use
three sensors to obtain internal responses. More sensors do not improve results
significantly and, what is obvious from the physical point of view, they rather
disturb the temperature field than help in obtaining better results.

The diagram in Figure 8 illustrates the dependence of the matrix B norm on
the first and second sensor location in the case when M = 3,x3 =1 — 7,
x1 < 05,27 < 29 < x3, At = 0.005.

Again (compare conclusions following Figure 5) we note that the matrix B
norm depends mainly on x; and x3, i.e. on the extreme sensors location.

X3 0.8 082 084 08 088 09 092 094 096 098 10

N=300 236 18 145 113 093 089 08 08 089 09 090
N=600 234 18 143 111 093 089 08 08 08 09 090
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Figure 5.
Matrix B norm versus
second sensor location
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Figure 6.
Matrix B norm versus
time step length

Figure 7.

Matrix B norm versus x»
and x5 for x; = 0.01, x4 =
1-x7 = 0.99 and

At = 0.005

Figure 8.
Matrix B norm versus x1
and x, for At = 0.005

The matrix B norm becomes greater than 1 when the time step is too small
(compare Figure 6) or when the two sensors located outside with respect to the
others are located too far from the boundary (compare Figure 4 and Figure 8).
Therefore, the following question has to be answered: what means “too far” in
the case of fixed time step, if the matrix B norm is to be smaller than 1? The
answer is presented in Figure 9.

In order to have ||B|| < 1 the points placed below the curve in Figure 9
should be chosen as the sensor location for a given time step. It is worth noting
that for the time step greater than circa 0.088 the matrix B norm is smaller than
1 independently of the location of sensors. On the other hand, if the time step is
smaller than circa 0.00035 then the matrix B norm is greater than 1 for any
location of sensors.
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The main conclusion resulting from the above analysis (when the ITRs are
given in exact form) is that only if the time step is greater than a certain limit
value depending on the sensor location then the iterative process (30) is
convergent.

Analysis of the ITR error propagation with the use of the spectral
norms of the introduced matrices

Assume an ITR in the kth time step is given with a certain error. Let 677 stand
for the matrix of the aforementioned errors. Then, by virtue of (30),

T, = AT;* + AST; + BAT;® | + BAST; | + B*Ty,_» (31)
where the superscript ¢ denotes the exact temperature. Let
H (BA)T(BA) H
V="—e—
|ATA]

denote quotient of the spectral norms of the matrices BA and A. Stability of the
iterative process described by the formula (30) will be ensured if the ITR error
from the (k—1)th time step will affect the field of temperature calculated in kth
step less than the ITR error from the kth time. It means that an inequality v — 1
has to be satisfied. Moreover, the term /3> T}, should be negligible.

By virtue of the analysis from the previous section we can confine our
consideration to the case M = 3. We also assume x3 = 1 — x; and x5 = 0.5. In
Figure 10 a dependence of the quotient v on the time step is presented for
%1 =0.01, 20 = 0.5, 23 = 0.99 and N = 600. Of course, we concentrate on the
casev < 1.

From Figure 10 it is clear that the ITR error is suppressed if the
dimensionless time step is greater than a certain critical value. In the case of
x1 = 0.01, x5 = 0,5, 23 = 0.99 when the quotient v is of the order 0.3 then the
term B2T}_o becomes negligible. From Figure 10 one can note that the
dimensionless time step is then of the order 0.0001.
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Figure 9.

The first sensor location
versus time step when
HBH = 1;)62 = 0.5,963
=1- X1
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Figure 10.

The quotient v versus
the dimensionless
time step

Figure 11.

The quotient v versus
the first ITR point
location

Figure 12.

The quotient v versus
the dimensionless time
step and the first sensor
location

In Figure 11 a dependence of v on the first sensor location (i.e. the point x1) is
shown. Here At = 0.001,x3 = 1 — 21,22 = 0.5 and V = 600. Of course, we are
interested in values of v less than 1.

Figure 11 confirms the earlier conclusion that in the case of three ITRs for
better ITR error suppression in time the outer (first and third) sensors should
be placed close to the boundary of the flat slab (i.e. close tox = 0or x = 1
respectively).

The next diagram, presented in Figure 12, shows a dependence of the quotient (
on the dimensionless time step and on the first sensor location for x3 = 1 — x7 and
xo = 0.5. We can note that to have v — 1 in the case of small time steps the first
sensor should be placed close to the boundary x =1 (e.g. for At = 0.02 we find x7 of
the order 0.1). To have v < 0.3 for At = 0.02 the value of x; should be of the order
0.05.
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The last diagram, in Figure 13, shows the dependence of the first sensor
location, x7, on such a dimensionless time step for which the quotient v is equal
to 1 (solid line). Then, the ITR error is not suppressed and it is not amplified
either. In order to have the ITR error suppressed for a fixed time step one has to
locate the first sensor at a point indicated by the area below the solid line. The
asterisk line illustrates the upper limit for the point x7 location found from the
formula (24) with the suppression parameter ¢ = 19/20.

Comparing both the solid and the asterisk lines, one can find a remarkable
agreement between the results obtained with two different methods.

Conclusions

The accurate determination of the heat transfer boundary condition is a crucial
component of mathematical models aimed at predicting the evolution of the
thermal, microstructural and stress fields in heat treatment operations, e.g. Taler
(1996; 1997); Hernandez et al. (1995). Therefore, a question of the IHCP solution
stability is one of the most important in the theory of the ill-posed problems. Here
that question has been discussed for the one-dimensional IHCP.

The conclusions derived from this work can be summarized as follows:

(1) TheITR error does not propagate in time in two cases:

« either the sensors are arbitrarily placed in the slab and then the time
step that ensures suppression of the IR error in time can be large
(that means too rough approximation of the temperature field in the
slab); or

the sensors are located near the boundary of the slab and the
admissible (in the sense of the IR error suppression) time step can be
small. Of course, the smaller time step is, the better approximation of
the boundary temperature may be obtained.

(2) Analysis of an effect of the inner sensors (placed between the two
located outside with respect to the others) on the approximate solution
stability is practically the same for three and for more than three
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Figure 13.

The first sensor location
versus the time step for
which the quotient v is
equal to 1 (s line) and
versus the upper limit
for the point x; location
found from the formula
(24) for a = 19/20
(asterisk line)
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sensors. It means that when dealing with an IHCP in a slab it is enough
to use three sensors in order to record the ITRs.

In many cases a shape of a two- and three-dimensional body may be
approximately described as a flat slab or cylindrical or spherical layer.
Consider an element of the body with known internal responses that can be
approximately described as a flat slab. Then, using dimensionless coordinates
the characteristic data concerning the IHCP in a flat slab have to be determined.
Finally, using one of the diagrams presented in the paper, the time step that
ensures stable calculations can be found.

In the case of cylindrical and spherical layers, an analysis similar to the one
presented in this paper may be done. Diagrams concerning the stability
conditions for these cases will be presented in Grysa and Maciag (in
preparation).
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